
ML in production
FunTech February 2019

m.andreev@conundrum.ai — Mark Andreev

mailto:m.andreev@conundrum.ai

Agenda

● About production

● Actuality of prediction

● From notebook to microservice

● Scale up your solution

● Monitoring & automatic problem solving

● Conclusion

2

https://clck.ru/FATUR

Main problems of production
Time
● Actuality of prediction

Data
● Inconstancy of data
● Difference between train / evaluation sets

Model
● Model sharing
● Model maintaining: regularly predict / re-train

24/7 without engineer
● Automatic monitoring
● Automatic problem solving

3

Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations

4

Big data

Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations

5

Big data

 Queue

Online prediction (~5 minute)
Classify photo, Rate announcement ads

Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations

6

Big data

 Queue

session

Online prediction (~5 minute)
Classify photo, Rate announcement ads

Realtime prediction (~300ms)
Search results, Ads recommendations
{Strong timeout SLA}

Inconstancy of data

Schema validation
Format validation using XML/Json schema

7

Inconstancy of data

Schema validation
Format validation using XML/Json schema

8

Data validation
Range validation. Test using hypotheses

Inconstancy of data

Schema validation
Format validation using XML/Json schema

9

Data validation
Range validation. Test using hypotheses

Distribution validation
Descriptive statistics

Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set

10

Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set

11

Feature extraction pipeline
Pipelines must be the same

fit

predict

Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set

12

Feature extraction pipeline
Pipelines must be the same

Features distribution
Features distribution should be the
same

fit

predict

How to share model

Frozen dependencies
Python packages, System libraries

Tests
Unit tests, Integration tests,
Exploration tests (hypothesis), Tests
with data

13

− solution.ipynb
− requirements.txt

− solution.py
− test_solution.py
− requirements.txt
− Dockerfile

Public interface
Expose your interface using REST
(Flask, Tornado), describe it in
Swagger

Stateless service

Stateless service

Extract state from service
Docker is an immutable container,
extract the state outside

Freeze service state
Save all dependencies and
sub-dependencies

14

− solution.py
− web.py
− config.json

Immutable data

Public interface
Allow external connection only
through public interfaces

Scale up your service
Stateless allows us to linearly scale
our solution

Mutable
data

Scaling up using orchestration

15

From pets to cattle

Regular offline prediction

16

Luigi by
- Data pipeline framework
- More stable
- Scheduler is not included

Airflow by
- Data pipeline framework
- More flexible
- More testable
- Pretty dashboard

Monitoring & automatic problem solving

17

Client Request ML Service

Client Response Request-id

Metrics

Errors

Request-id
Logs

Save your history
Use Logs, Metrics, Errors saving, Tracing for problem capturing and detection

Visualize your data through dashboards
Explicit is better than implicit. Visualize your key indicators

Graceful degradation.
Try to solve your problems automatically using spare models

Prometheus

Conclusion

● Check your inputs

● Containerize your solution

● Use Microservices Architecture

● Monitoring tools is your best friends

● Solve your problems automatically

