Agenda

● About production
● Actuality of prediction
● From notebook to microservice
● Scale up your solution
● Monitoring & automatic problem solving
● Conclusion
Main problems of production

Time
- Actuality of prediction

Data
- Inconstancy of data
- Difference between train / evaluation sets

Model
- Model sharing
- Model maintaining: regularly predict / re-train

24/7 without engineer
- Automatic monitoring
- Automatic problem solving
Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations
Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations

Online prediction (~5 minute)
Classify photo, Rate announcement ads
Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations

Online prediction (~5 minute)
Classify photo, Rate announcement ads

Realtime prediction (~300ms)
Search results, Ads recommendations
{Strong timeout SLA}
Inconstancy of data

Schema validation
Format validation using XML/Json schema
Inconstancy of data

Schema validation
Format validation using XML/Json schema

Data validation
Range validation. Test using hypotheses
Inconstancy of data

Schema validation
Format validation using XML/Json schema

Data validation
Range validation. Test using hypotheses

Distribution validation
Descriptive statistics
Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set
Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set

Feature extraction pipeline
Pipelines must be the same
Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set

Feature extraction pipeline
Pipelines must be the same

Features distribution
Features distribution should be the same
How to share models

Frozen dependencies
Python packages, System libraries

Tests
Unit tests, Integration tests, Exploration tests (hypothesis), Tests with data

Public interface
Expose your interface using REST (Flask, Tornado), describe it in Swagger

Stateless service
Stateless service

Extract state from service
Docker is an immutable container, extract the state outside

Freeze service state
Save all dependencies and sub-dependencies

Public interface
Allow external connection only through public interfaces

Scale up your service
Stateless allows us to linearly scale our solution

Immutable data
- solution.py
- web.py
- config.json

Mutable data
Scaling up using orchestration

From *pets* to *cattle*
Regular offline prediction

Luigi by Spotify
- Data pipeline framework
- More stable
- Scheduler is not included

Airflow by Airbnb
- Data pipeline framework
- More flexible
- More testable
- Pretty dashboard
Monitoring & automatic problem solving

Save your history
Use Logs, Metrics, Errors saving, Tracing for problem capturing and detection

Visualize your data through dashboards
Explicit is better than implicit. Visualize your key indicators

Graceful degradation.
Try to solve your problems automatically using spare models
Conclusion

- Check your inputs
- Containerize your solution
- Use Microservices Architecture
- Monitoring tools is your best friends
- Solve your problems automatically