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https://clck.ru/FATUR



Main problems of production
Time
● Actuality of prediction

Data
● Inconstancy of data
● Difference between train / evaluation sets

Model
● Model sharing
● Model maintaining: regularly predict / re-train

24/7 without engineer
● Automatic monitoring
● Automatic problem solving
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Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations
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Big data
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Big data

   Queue

Online prediction (~5 minute)
Classify photo, Rate announcement ads



Actuality of prediction

Offline prediction (~3+ hour)
Churn prediction, User-Item recommendations
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Big data

   Queue

session

Online prediction (~5 minute)
Classify photo, Rate announcement ads

Realtime prediction (~300ms)
Search results, Ads recommendations
{Strong timeout SLA}



Inconstancy of data

Schema validation
Format validation using XML/Json schema
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Data validation
Range validation. Test using hypotheses



Inconstancy of data

Schema validation
Format validation using XML/Json schema
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Data validation
Range validation. Test using hypotheses

Distribution validation
Descriptive statistics



Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set
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Feature extraction pipeline 
Pipelines must be the same

fit

predict



Difference between train / evaluation sets

Train / Evaluation Time Gap
Time between train set and evaluation set
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Feature extraction pipeline 
Pipelines must be the same

Features distribution
Features distribution should be the 
same

fit

predict



How to share model

Frozen dependencies
Python packages, System libraries

Tests
Unit tests, Integration tests, 
Exploration tests (hypothesis), Tests 
with data
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− solution.ipynb
− requirements.txt

− solution.py
− test_solution.py
− requirements.txt
− Dockerfile

Public interface
Expose your interface using REST 
(Flask, Tornado), describe it in 
Swagger

Stateless service



Stateless service

Extract state from service
Docker is an immutable container, 
extract the state outside 

Freeze service state
Save all dependencies and 
sub-dependencies
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− solution.py
− web.py
− config.json

Immutable data

Public interface
Allow external connection only 
through public interfaces

Scale up your service
Stateless allows us to linearly scale 
our solution

Mutable 
data



Scaling up using orchestration
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From pets to cattle



Regular offline prediction
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Luigi by
- Data pipeline framework
- More stable
- Scheduler is not included

Airflow by 
- Data pipeline framework
- More flexible
- More testable
- Pretty dashboard



Monitoring & automatic problem solving
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Client Request ML Service

Client Response Request-id

Metrics

Errors

Request-id
Logs

Save your history
Use Logs, Metrics, Errors saving, Tracing for problem capturing and detection

Visualize your data through dashboards
Explicit is better than implicit. Visualize your key indicators

Graceful degradation.
Try to solve your problems automatically using spare models

Prometheus



Conclusion

● Check your inputs

● Containerize your solution

● Use Microservices Architecture

● Monitoring tools is your best friends

● Solve your problems automatically


